姓名:刘建春
电子邮箱:jcliu17@ustc.edu.cn
个人主页:https://jcliu17.github.io/
课题组主页:https://int-ustc.github.io/
主要研究方向:物联网、边缘计算、云计算、联邦学习
刘建春,男,小米青年学者、安徽省计算机学会优秀青年科学家、CCF互联网专委会执行委员、CCF苏州委员。2022年于中国科学技术大学大数据学院获博士学位,毕业留校任教。现为中国科大计算机学院特任副研究员、硕士生导师。主要从事物联网、边缘智能、联邦学习等方面的研究。近五年,在INFOCOM、ICDE、IWQoS等顶级国际会议和TNET、TMC等国内外著名期刊上发表论文40余篇。其中,以一作/通讯发表CCF A类/中科院一区论文15篇,CCF B 类/中科院二区论文4篇,多篇论文入选ESI高被引论文。申请专利10余项,其中授权专利5项。近年来,作为负责人主持了江苏省自然科学青年基金、安徽省自然科学青年基金、中国科大青年创新基金,以及OPPO、云融科技企业合作等项目。同时,作为核心技术骨干参与了国家自然科学基金委重点项目、科技部重点研发课题等项目。在科研获奖方面,获得过中国计算机学会网络与数据通信专委优博计划提名、ACM(合肥)优秀博士学位论文、中国科大优秀博士学位论文、苏州独墅湖科教创新区科教骨干人才等。承担多个国际知名期刊和会议的审稿人,包括IEEE JSAC、TMC、TPDS、TCCN、TWC、IoT等。
获奖情况:
1. 2024年,CCF网络与数据通信专委优博计划提名
2. 2024年,ACF优秀青年科学家
3. 2023年,ACM优博(合肥)
4. 2023年,苏州独墅湖科教创新区科教骨干人才
5. 2022年,小米青年学者(学院唯一)
6.2022年,中国科大优秀博士毕业论文(学院唯一)
代表性著作:
[1] Jianchun Liu, Hongli Xu, Lun Wang, Chen Qian, Jinyang Huang, He Huang. Adaptive asynchronous federated learning in resource-constrained edge computing[J]. IEEE Transactions on Mobile Computing, 2021, 22(2): 674-690. (CCF A类, ESI高被引论文)
[2] Jianchun Liu, *Yang Xu, *Hongli Xu, Yunming Liao, Zhiyuan Wang, He Huang. Enhancing federated learning with intelligent model migration in heterogeneous edge computing[C]//2022 IEEE 38th International Conference on Data Engineering (ICDE). IEEE, 2022: 1586-1597. (CCF A类)
[3] Jianchun Liu, Qingmin Zeng, Hongli Xu, Yang Xu, Zhiyuan Wang, He Huang, Adaptive block-wise regularization and knowledge distillation for enhancing federated learning[J]. IEEE/ACM Transactions on Networking, 2023. (CCF A类)
[4] Jianchun Liu, Jiaming Yan, Hongli Xu, Zhiyuan Wang, Jinyang Huang, Yang Xu, Finch: Enhancing federated learning with hierarchical neural architecture search[J]. IEEE Transactions on Mobile Computing, 2023. (CCF A类)
[5] Jun Liu, Jianchun Liu, Hongli Xu, Yunming Liao, Zhiyuan Wang, Qianpiao Ma, Yoga: Adaptive layer-wise model aggregation for decentralized federated learning[J]. IEEE/ACM Transactions on Networking, 2023. (CCF A类)
[6] Jiaming Yan, Jianchun Liu, Shilong Wang, Hongli Xu, Haifeng Liu, Jianhua Zhou, Heroes: Lightweight federated learning with neural composition and adaptive local update in heterogeneous edge networks[C]//IEEE INFOCOM 2024-IEEE Conference on Computer Communications. (CCF A类)
[7] Zhiwei Yao, Jianchun Liu, Hongli Xu, Lun Wang, Chen Qian, Yunming Liao, Ferrari: A personalized federated learning framework for heterogeneous edge clients[J]. IEEE Transactions on Mobile Computing, 2024. (CCF A类)
[8] Jiaming Yan, Jianchun Liu, Hongli Xu, Zhiyuan Wang, Chunming Qiao, Peaches: Personalized federated learning with neural architecture search in edge computing[J]. IEEE Transactions on Mobile Computing, 2024. (CCF A类)
[9] Jianchun Liu, Shilong Wang, Hongli Xu, Yang Xu, Yunming Liao, Jinyang Huang, He Huang, Federated Learning With Experience-Driven Model Migration in Heterogeneous Edge Networks[J]. IEEE/ACM Transactions on Networking, 2024. (CCF A类)
[10] Jianchun Liu, Jun Liu, Hongli Xu, Yunming Liao, Zhiwei Yao, Min Chen, Chen Qian, Enhancing Semi-Supervised Federated Learning with Progressive Training in Heterogeneous Edge Computing[J]. IEEE Transactions on Mobile Computing, 2024. (CCF A类)
(更新于2024年11月)