刘建春


姓名:刘建春

电子邮箱:jcliu17@ustc.edu.cn

个人主页:https://jcliu17.github.io/

课题组主页:https://int-ustc.github.io/ 

主要研究方向物联网、边缘计算、云计算、联邦学习


       

刘建春,男,安徽省计算机学会优秀青年科学家、CCF互联网专委会执行委员、CCF苏州委员。2022年于中国科学技术大学大数据学院获博士学位,毕业留校任教。现为中国科大计算机学院特任副研究员、硕士生导师。主要从事物联网、边缘智能、联邦学习、大模型训推等方面的研究。近五年,在INFOCOMICDEIWQoS等顶级国际会议和ToNTMC等国内外著名期刊上发表论文40余篇。其中,以一作/通讯发表CCF A/中科院一区论文19篇,CCF B /中科院二区论文5篇,多篇论文入选ESI高被引论文。申请专利10余项,其中授权专利5项。近年来,作为负责人主持了江苏省自然科学青年基金、安徽省自然科学青年基金、中国科大青年创新基金,以及OPPO、云融科技企业合作等项目。同时,作为核心技术骨干参与了国家自然科学基金委重点项目、科技部重点研发课题等项目。在科研获奖方面,获得过IEEE HITC Outstanding PhD Dissertation Award、中国计算机学会网络与数据通信专委优博计划提名、ACM(合肥)优秀博士学位论文、中国科大优秀博士学位论文、苏州独墅湖科教创新区科教骨干人才等。承担多个国际知名期刊和会议的审稿人,包括IEEE JSACTMCTPDSTCCNTWCIoT等。


主要研究方向:物联网、边缘计算、联邦学习、大模型推理


获奖情况:

1.    2024年,IEEE HITC Outstanding PhD Dissertation Award

2.    2024年,CCF网络与数据通信专委优博计划提名

3.    2024年,ACF优秀青年科学家

4.    2023年,ACM优博(合肥)

5.    2023年,苏州独墅湖科教创新区科教骨干人才

62022年,中国科大优秀博士毕业论文(学院唯一)



代表性著作:

[1]     Jianchun Liu, Jiaming yan, Ji Qi, Hongli Xu, Shilong Wang, Chunming Qiao, Liusheng Huang, Adaptive Local Update and Neural Composition for Accelerating Federated Learning in Heterogeneous Edge Networks , IEEE/ACM Transactions on Networking (ToN), 2025. (CCF A)

[2]     Luyao Gao, *Jianchun Liu, *Hongli Xu, Sun Xu, Qianpiao Ma, Liusheng Huang, Accelerating End-Cloud Collaborative Inference via Near Bubble-free Pipeline Optimization , IEEE International Conference on Computer Communications (INFOCOM), 2025. (CCF A)

[3]     Wenyi Liang, *Jianchun Liu, *Hongli Xu, Chunming Qiao, Liusheng Huang, Many Hands Make Light Work: Accelerating Edge Inference via Multi-Client Collaborative Caching , IEEE International Conference on Data Engineering (ICDE), 2025. (CCF A)

[4]     Jianchun Liu, Shilong Wang, Hongli Xu, Yang Xu, Yunming Liao, Jinyang Huang, He Huang, Federated Learning With Experience-Driven Model Migration in Heterogeneous Edge Networks[J]. IEEE/ACM Transactions on Networking, 2024. (CCF A)

[5]     Jianchun Liu, Jun Liu, Hongli Xu, Yunming Liao, Zhiwei Yao, Min Chen, Chen Qian, Enhancing Semi-Supervised Federated Learning with Progressive Training in Heterogeneous Edge Computing[J]. IEEE Transactions on Mobile Computing, 2024. (CCF A)

[6]     Jianchun Liu, Jun Liu, Hongli Xu, Yunming Liao, Zhiwei Yao, Min Chen, Chen Qian, Enhancing Semi-Supervised Federated Learning with Progressive Training in Heterogeneous Edge Computing , IEEE Transactions on Mobile Computing (TMC), 2024. (CCF A)

[7]     Jianchun Liu, Qingmin Zeng, Hongli Xu, Yang Xu, Zhiyuan Wang, He Huang, Adaptive block-wise regularization and knowledge distillation for enhancing federated learning[J]. IEEE/ACM Transactions on Networking, 2023. (CCF A)

[8]     Jianchun Liu, Jiaming Yan, Hongli Xu, Zhiyuan Wang, Jinyang Huang, Yang Xu, Finch: Enhancing federated learning with hierarchical neural architecture search[J]. IEEE Transactions on Mobile Computing, 2023. (CCF A)

[9]     Jianchun Liu, Hongli Xu, Lun Wang, Chen Qian, Jinyang Huang, He Huang. Adaptive asynchronous federated learning in resource-constrained edge computing[J]. IEEE Transactions on Mobile Computing, 2021, 22(2): 674-690. (CCF A, ESI高被引论文)

[10]Jianchun Liu, *Yang Xu, *Hongli Xu, Yunming Liao, Zhiyuan Wang, He Huang. Enhancing federated learning with intelligent model migration in heterogeneous edge computing[C]//2022 IEEE 38th International Conference on Data Engineering (ICDE). IEEE, 2022: 1586-1597. (CCF A)




(更新于2025年4月)